American Society of Mechanical Engineers, Journal of Medical Devices, 4(8), p. 041012
DOI: 10.1115/1.4028421
Full text: Unavailable
We have used finite-element (FE) modeling to investigate the mechanical compliance, positional stability and contact pressures associated with a novel type of spinal cord stimulator that is placed directly on the pial surface of the spinal cord in order to more selectively activate neural structures for relief of intractable pain. The properties used in the model are those of the actual prototype devices employed in recent in vitro and chronic in vivo tests. The agreement between predictions and experimental observations serves to validate our FE approach, which can now be used to further optimize the device's design and performance.