Published in

Cell Press, Cell Reports, 5(5), p. 1243-1255, 2013

DOI: 10.1016/j.celrep.2013.10.046

Links

Tools

Export citation

Search in Google Scholar

An IKKα-Nucleophosmin Axis Utilizes Inflammatory Signaling to Promote Genome Integrity

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The inflammatory microenvironment promotes skin tumorigenesis. However, the mechanisms of how cells protect themselves from inflammatory signals have yet to be revealed. Downregulation of IKKα promotes skin tumor progression from papillomas to squamous cell carcinomas, which is frequently accompanied by genomic instability, including aneuploid chromosomes and extra centrosomes. In this study, we found that IKKα promoted oligomerization of nucleophosmin (NPM), a negative centrosome duplication regulator, which further enhanced NPM and centrosome association, inhibited centrosome amplification, and maintained genome integrity. Levels of NPM hexamers and IKKα were conversely associated with skin tumor progression. Importantly, pro-inflammatory cytokine-induced IKKα activation promoted the formation of NPM oligomers and reduced centrosome numbers in mouse and human cells, whereas kinase-dead IKKα blocked this connection. Therefore, our findings suggest a previously unknown mechanism in which an IKKα-NPM axis may use the inflammatory signal to suppress centrosome amplification, promote genomic integrity, and prevent tumor progression.