Published in

Emerald, COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 4(14), p. 175-179, 1995

DOI: 10.1108/eb051937

Links

Tools

Export citation

Search in Google Scholar

Design Optimization of an Electrostatic Micromotor With Axial Field

Journal article published in 1995 by P. Di Barba, A. Savini, S. Wiak ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Historically, the idea of using electrostatic phenomena to produce motion has long stimulated the activity of scientists. Although the power generated by electrostatic motors is modest, the absence of windings and ferromagnetic material makes this kind of device competitive for applications characterized by low levels of torque and reduced volumes. During last years a renewed attention appeared towards electrostatic devices in the microscopic scale; their fabrication has been possible thanks to the technology for Si‐integrated‐circuits. In particular, electrostatic micromotors have an increasing role as position actuators when submillimetric movements are required. Methodologies of numerical simulation applied to microdevices are a helpful tool for the designer, who should fulfil criteria often in mutual clash like electromechanical response and fabrication cost. More generally, procedures of automated optimal design are now available, tackling the design problem as the constrained minimization of an objective function suitably set up.