Published in

American Association of Immunologists, The Journal of Immunology, 2(187), p. 851-860, 2011

DOI: 10.4049/jimmunol.1100002

Links

Tools

Export citation

Search in Google Scholar

Loss of T Cell CD98 H Chain Specifically Ablates T Cell Clonal Expansion and Protects from Autoimmunity

Journal article published in 2011 by Joseph Cantor, Marina Slepak, Nil Ege ORCID, John T. Chang, Mark H. Ginsberg
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

CD98hc (CD98 heavy chain, 4F2 antigen, Slc3a2) was discovered as a lymphocyte activation antigen. Deletion of CD98hc in B cells leads to complete failure of B cell proliferation, plasma cell formation, and antibody secretion. Here we examined the role of T cell CD98 in cell-mediated immunity and autoimmune disease pathogenesis by specifically deleting it in murine T cells. Deletion of T cell CD98 prevented experimental autoimmune diabetes associated with dramatically reduced T cell clonal expansion. Nevertheless initial T cell homing to pancreatic islets was unimpaired. In sharp contrast to B cells, CD98-null T cells showed only modestly impaired antigen-driven proliferation and nearly normal homeostatic proliferation. Furthermore, these cells were activated by antigen leading to cytokine production (CD4) and efficient cytolytic killing of targets (CD8). The integrin binding domain of CD98 was necessary and sufficient for full clonal expansion, pointing to a role for adhesive signaling in T cell proliferation and autoimmune disease. When we expanded CD98-null T cells in vitro, they adoptively transferred diabetes, establishing that impaired clonal expansion was responsible for protection from disease. Thus the integrin binding domain of CD98 is required for antigen-driven T cell clonal expansion in the pathogenesis of an autoimmune disease and may represent a useful therapeutic target.