Published in

Oxford University Press, Plant Physiology, 1(140), p. 49-58, 2005

DOI: 10.1104/pp.105.072744

Links

Tools

Export citation

Search in Google Scholar

ARABINAN DEFICIENT 1 Is a Putative Arabinosyltransferase Involved in Biosynthesis of Pectic Arabinan in Arabidopsis

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract The function of a putative glycosyltransferase (At2g35100) was investigated in Arabidopsis (Arabidopsis thaliana). The protein is predicted to be a type 2 membrane protein with a signal anchor. Two independent mutant lines with T-DNA insertion in the ARABINAN DEFICIENT 1 (ARAD1) gene were analyzed. The gene was shown to be expressed in all tissues but particularly in vascular tissues of leaves and stems. Analysis of cell wall polysaccharides isolated from leaves and stems showed that arabinose content was reduced to about 75% and 46%, respectively, of wild-type levels. Immunohistochemical analysis indicated a specific decrease in arabinan with no change in other pectic domains or in glycoproteins. The cellular structure of the stem was also not altered. Isolated rhamnogalacturonan I from mutant tissues contained only about 30% of the wild-type amount of arabinose, confirming the specific deficiency in arabinan. Linkage analysis showed that the small amount of arabinan present in mutant tissue was structurally similar to that of the wild type. Transformation of mutant plants with the ARAD1 gene driven by the 35S promoter led to full complementation of the phenotype, but none of the transformants had more arabinan than the wild-type level. The data suggest that ARAD1 is an arabinan α-1,5-arabinosyltransferase. To our knowledge, the identification of other l-arabinosyltransferases has not been published.