Published in

Elsevier, Vision Research, 21(47), p. 2685-2699, 2007

DOI: 10.1016/j.visres.2007.03.024

Links

Tools

Export citation

Search in Google Scholar

Caloric vestibular stimulation reveals discrete neural mechanisms for coherence rivalry and eye rivalry: A meta-rivalry model

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Binocular rivalry is an extraordinary visual phenomenon that has engaged investigators for centuries. Since its first report, there has been vigorous debate over how the brain achieves the perceptual alternations that occur when conflicting images are presented simultaneously, one to each eye. Opposing high-level/stimulus-representation models and low-level/eye-based models have been proposed to explain the phenomenon, recently merging into an amalgam view. Here, we provide evidence that during viewing of Diaz-Caneja stimuli, coherence rivalry-in which aspects of each eye's presented image are perceptually regrouped into rivalling coherent images-and eye rivalry operate via discrete neural mechanisms. We demonstrate that high-level brain activation by unilateral caloric vestibular stimulation shifts the predominance of perceived coherent images (coherence rivalry) but not half-field images (eye rivalry). This finding suggests that coherence rivalry (like conventional rivalry according to our previous studies) is mediated by interhemispheric switching at a high level, while eye rivalry is mediated by intrahemispheric mechanisms, most likely at a low level. Based on the present data, we further propose that Diaz-Caneja stimuli induce 'meta-rivalry' whereby the discrete high- and low-level competitive processes themselves rival for visual consciousness. (C) 2007 Elsevier Ltd. All rights reserved.