Published in

Optica, Optics Letters, 6(38), p. 863, 2013

DOI: 10.1364/ol.38.000863

Links

Tools

Export citation

Search in Google Scholar

Tunable silicon photonics directional coupler driven by a transverse temperature gradient

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A compact directional coupler fabricated on a silicon photonic platform is presented, with a power-splitting ratio that can be tuned through a transverse temperature gradient induced by a laterally shifted integrated heater. The tuning mechanism exploits the thermally induced phase velocity mismatch between the coupled modes of the silicon waveguides. The positions of the integrated heater and the waveguide design are optimized to maximize the tuning range and to reduce electric power consumption. Asynchronous devices with an intrinsic phase mismatch are demonstrated to be more efficient, providing a tunable coupled power from 0.7 to 0.01 with 36 mW maximum power dissipation.