Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, Environmental Science and Technology, 19(48), p. 11127-11136, 2014

DOI: 10.1021/es5025096

Links

Tools

Export citation

Search in Google Scholar

Aerosol Liquid Water Driven by Anthropogenic Nitrate: Implications for Lifetimes of Water-Soluble Organic Gases and Potential for Secondary Organic Aerosol Formation

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Aerosol liquid water (ALW) influences aerosol radiative properties and the partitioning of gas-phase water-soluble organic compounds (WSOC_g) to the condensed phase. A recent modeling study drew attention to the anthropogenic nature of ALW in the southeastern United States, where predicted ALW is driven by regional sulfate. Herein, we demonstrate that ALW in the Po Valley, Italy, is also anthropogenic but is driven by locally formed nitrate, illustrating regional differences in the aerosol components responsible for ALW. We present field evidence for the influence of controllable ALW on the lifetimes and atmospheric budgets of reactive organic gases and note the role of ALW in the formation of secondary organic aerosol (SOA). Nitrate is expected to increase in importance due to increased emissions of nitrate precursors, as well as policies aimed at reducing sulfur emissions. We argue that the impacts of increased particulate nitrate in future climate and air quality scenarios may be under predicted because they do not account for the increased potential for SOA formation in nitrate-derived ALW, nor do they account for the impacts of this ALW on reactive gas budgets and gas-phase photochemistry.