Published in

Elsevier, Biochimie, 8(93), p. 1328-1340

DOI: 10.1016/j.biochi.2011.06.015

Links

Tools

Export citation

Search in Google Scholar

Naphthalene diimide scaffolds with dual reversible and covalent interaction properties towards G-quadruplex

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Selective recognition and alkylation of G-quadruplex oligonucleotides has been achieved by substituted naphathalene diimides (NDIs) conjugated to engineered phenol moieties by alkyl-amido spacers with tunable length and conformational mobility. FRET-melting assays, circular dichroism titrations and gel electrophoresis analysis have been carried out to evaluate both reversible stabilization and alkylation of the G-quadruplex. The NDIs conjugated to a quinone methide precursor (NDI-QMP) and a phenol moiety by the shortest alkyl-amido spacer exhibited a planar and fairly rigid geometry (modelled by DFT computation). They were the best irreversible and reversible G-quadruplex binders, respectively. The above NDI-QMP was able to alkylate the telomeric G-quadruplex DNA in the nanomolar range and resulted 100-1000 times more selective on G-quadruplex versus single- and double-stranded oligonucleotides. This compound was also the most cytotoxic against a lung carcinoma cell line.