Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 46(102), p. 16795-16800, 2005

DOI: 10.1073/pnas.0508516102

Links

Tools

Export citation

Search in Google Scholar

Molecular basis for keratoconus: Lack of TrkA expression and its transcriptional repression by Sp3

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Keratoconus is the most common corneal dystrophy that leads to severe visual impairment. Although the major etiological factors are genetic, the pathogenetic mechanism(s) is unknown. No medical treatments exist, and the only therapeutic approach is corneal transplantation. Recent data demonstrate the involvement of nerve growth factor (NGF) in trophism and corneal wound healing. In this study, we investigated alterations in the NGF pathway in keratoconus-affected corneas and found a total absence of the NGF-receptor TrkA (TrkA NGFR ) expression and a decreased expression of NGF and p75 NTR . The absence of TrkA NGFR expression was associated with a strong increase in the Sp3 repressor short isoform(s) and a lack of the Sp3 activator long isoform. Sp3 is a bifunctional transcription factor that has been reported to stimulate or repress the transcription of numerous genes. Indeed, we found that Sp3 short isoform(s) overexpression in cell culture results in a down-regulation of TrkA NGFR expression. We suggest that an imbalance in Sp transcription-factor isoforms may play a role in controlling the NGF signaling, thus contributing to the pathogenesis of keratoconus. This mechanism for the transcriptional repression of the TrkA NGFR gene can provide the platform for the development of a therapeutic strategy.