Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 29(102), p. 10070-10075, 2005

DOI: 10.1073/pnas.0502402102

Links

Tools

Export citation

Search in Google Scholar

Modifying specific cysteines of the electrophile-sensing human Keap1 protein is insufficient to disrupt binding to the Nrf2 domain Neh2

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The risks of cancer and other degenerative diseases caused by reactive oxygen species and electrophiles can be reduced by the up-regulation of detoxifying enzymes. A major mechanism whereby these protective enzymes are induced occurs through activation of the antioxidant response element (ARE) by the oxidative-stress sensor protein Kelch-like ECH-associated protein 1 (Keap1) and the transcription factor NF-E2-related factor 2 (Nrf2). Under basal conditions, Keap1 sequesters Nrf2 in the cytoplasm by binding to its Neh2 domain. Chemical inducers such as sulforaphane are known to react with Keap1 cysteine residues, thereby promoting Nrf2 nuclear accumulation and hence ARE activation. A widely accepted model for Nrf2 nuclear accumulation is that modification of Keap1 cysteines leads directly to dissociation of the Keap1-Nrf2 complex. This model is based on studies with mouse proteins and has served as the experimental basis and hypothesis for numerous investigations. Through a combination of chemical, mass spectrometry, and isothermal titration calorimetry methods, we have tested the direct-dissociation model using a series of ARE inducers: sulforaphane, isoliquiritigenin, 15-deoxy-Δ12,14-prostaglandin-J2, menadione, 1-Cl-2,4-dinitrobenzene, and biotinylated iodoacetamide. Surprisingly, these data suggest that the direct disruption model for Keap1-Nrf2 is incorrect. The relative reactivity of human Keap1 cysteines was determined. In addition to the same five cysteines identified for mouse Keap1, two highly reactive and previously unobserved cysteines were identified. Based on these results, a model is proposed that should aid in the understanding of Keap1-Nrf2 signaling mechanisms.