Published in

CSIRO Publishing, Australian Journal of Chemistry, 4(66), p. 429, 2013

DOI: 10.1071/ch12474

Links

Tools

Export citation

Search in Google Scholar

A Comparative Study of the Structural, Optical, and Electrochemical Properties of Squarate-Based Coordination Frameworks

Journal article published in 2013 by Pavel M. Usov, Tony D. Keene ORCID, Deanna M. D'Alessandro
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Systematic studies of the thermal expansion, optical, and redox properties of a series of six squarate-based frameworks, [MII(C4O4)(H2O)2] (MII = MnII, FeII, CoII, NiII, ZnII, CdII) have revealed that five members of the series exhibit cubic structures in which the squarate ligands are configured in an ‘eclipsed’ phase, while the CdII analogue exhibits a trigonal structure with a ‘staggered’ orientation of the ligands. The ‘eclipsed’ structures are characterised by a positive coefficient of thermal expansion, while the CdII analogue exhibits zero thermal expansion. Ultraviolet-visible-near infrared (UV-Vis-NIR) spectra and electrochemical measurements indicate that electron delocalisation across the dianionic squarate bridge is absent.