Published in

American Institute of Physics, Applied Physics Letters, 22(105), p. 223901

DOI: 10.1063/1.4903061

Links

Tools

Export citation

Search in Google Scholar

Nanoimprint-assisted fabrication of high haze metal mesh electrode for solar cells

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

We propose a concept of transparent electrode for solar cells surpassing conventional transparent conductive oxide. Transparent electrode requires low electrical resistivity, high optical transparency, and high optical haze. Although transparent conductive oxide by chemical vapor deposition is widely used as a transparent electrode for solar cells, a breakthrough of the trade-off between electrical and optical properties is required for further improvement of solar cell efficiency. We demonstrate solution-processed electrode fabrication by using nanoimprint technology and metal nanoparticle ink. Silver mesh electrode is self-aligned on nanoimprinted texture with concave pattern as a template for mesh grid. Our electrode concept can realize desired high optical haze by nanoimprinted texture, as well as low electrical resistivity and high optical transparency by metal mesh electrode simultaneously, which boosts solar cell efficiency.