Dissemin is shutting down on January 1st, 2025

Published in

American Institute of Physics, The Journal of Chemical Physics, 4(140), p. 044118

DOI: 10.1063/1.4863136

Links

Tools

Export citation

Search in Google Scholar

Density fitting for three-electron integrals in explicitly correlated electronic structure theory

Journal article published in 2014 by James C. Womack ORCID, Frederick R. Manby
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

The principal challenge in using explicitly correlated wavefunctions for molecules is the evaluation of nonfactorizable integrals over the coordinates of three or more electrons. Immense progress was made in tackling this problem through the introduction of a single-particle resolution of the identity. Decompositions of sufficient accuracy can be achieved, but only with large auxiliary basis sets. Density fitting is an alternative integral approximation scheme, which has proven to be very reliable for two-electron integrals. Here, we extend density fitting to the treatment of all three-electron integrals that appear at the MP2-F12/3*A level of theory. We demonstrate that the convergence of energies with respect to auxiliary basis size is much more rapid with density fitting than with the traditional resolution-of-the-identity approach.