Published in

American Institute of Physics, Applied Physics Letters, 16(103), p. 161115

DOI: 10.1063/1.4826454

Links

Tools

Export citation

Search in Google Scholar

Magnetically tunable terahertz magnetoplasmons in ferrofluid-filled photonic crystals

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

We investigated terahertz (THz) magneto-optical properties of a ferrofluid and a ferrofluid-filled photonic crystal (FFPC) by using the THz time-domain spectroscopy. A magnetoplasmon resonance splitting and an induced THz transparency phenomenon were demonstrated in the FFPC. The further investigation reveals that the induced transparency originates from the interference between magnetoplasmon modes in the hybrid magneto-optical system of FFPC, and the THz modulation with a 40% intensity modulation depth can be realized in this induced transparency frequency band. This device structure and its tunabilty scheme will have great potential applications in THz filtering, modulation and sensing.