Published in

American Institute of Physics, Journal of Applied Physics, 2(114), p. 023513

DOI: 10.1063/1.4813091

Links

Tools

Export citation

Search in Google Scholar

Ramp compression of iron to 273 GPa

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Multiple thickness Fe foils were ramp compressed over several nanoseconds to pressure conditions relevant to the Earth's core. Using wave-profile analysis, the sound speed and the stress-density response were determined to a peak longitudinal stress of 273 GPa. The measured stress-density states lie between shock compression and 300-K static data, and are consistent with relatively low temperatures being achieved in these experiments. Phase transitions generally display time-dependent material response and generate a growing shock. We demonstrate for the first time that a low-pressure phase transformation (α-Fe to ε-Fe) can be overdriven by an initial steady shock to avoid both the time-dependent response and the growing shock that has previously limited ramp-wave-loading experiments. In addition, the initial steady shock pre-compresses the Fe and allows different thermodynamic compression paths to be explored.