Published in

American Institute of Physics, Applied Physics Letters, 9(102), p. 091604

DOI: 10.1063/1.4793999

Links

Tools

Export citation

Search in Google Scholar

Work function and electron affinity of the fluorine-terminated (100) diamond surface

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

The work function and electron affinity of fluorine-terminated (100) diamond surfaces prepared by exposure to dissociated XeF2 have been determined using synchrotron-based photoemission. After vacuum annealing to 350 °C a clean, monofluoride terminated C(100):F surface was obtained for which an electron affinity of 2.56 eV was measured. This is the highest electron affinity reported for any diamond surface termination so far, and it exceeds the value predicted by recent density functional theory calculations by 0.43 eV. The work function of 7.24 eV measured for the same surface places the Fermi energy of 0.79 eV above the valence band maximum.