American Institute of Physics, Applied Physics Letters, 20(100), p. 201104
DOI: 10.1063/1.4718525
Full text: Unavailable
Germanium ridge waveguides can be tensilely strained using silicon nitride thin films as stressors. We show that the strain transfer in germanium depends on the width of the waveguides. Carrier population in the zone center Γ valley can also be significantly increased when the ridges are oriented along the 〈100〉 direction. We demonstrate an uniaxial strain transfer up to 1% observed on the room temperature direct band gap photoluminescence of germanium. The results are supported by 30 band k·p modeling of the electronic structure and the finite element modeling of the strain field.