Dissemin is shutting down on January 1st, 2025

Published in

American Institute of Physics, The Journal of Chemical Physics, 14(136), p. 144101

DOI: 10.1063/1.3700436

Links

Tools

Export citation

Search in Google Scholar

On the evaluation of the non-interacting kinetic energy in density functional theory

Journal article published in 2012 by Michael J. G. Peach ORCID, David G. J. Griffiths, David J. Tozer
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

The utility of both an orbital-free and a single-orbital expression for computing the non-interacting kinetic energy in density functional theory is investigated for simple atomic systems. The accuracy of both expressions is governed by the extent to which the Kohn–Sham equation is solved for the given exchange–correlation functional and so special attention is paid to the influence of finite Gaussian basis sets. The orbital-free expression is a statement of the virial theorem and its accuracy is quantified. The accuracy of the single-orbital expression is sensitive to the choice of Kohn–Sham orbital. The use of particularly compact orbitals is problematic because the failure to solve the Kohn–Sham equation exactly in regions where the orbital has decayed to near-zero leads to unphysical behaviour in regions that contribute to the kinetic energy, rendering it inaccurate. This problem is particularly severe for core orbitals, which would otherwise appear attractive due to their formally nodeless nature. The most accurate results from the single-orbital expression are obtained using the relatively diffuse, highest occupied orbitals, although special care is required at orbital nodes.