Published in

American Institute of Physics, The Journal of Chemical Physics, 14(136), p. 144105

DOI: 10.1063/1.3696963

Links

Tools

Export citation

Search in Google Scholar

The orbital-specific-virtual local coupled cluster singles and doubles method

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

We extend the orbital-specific-virtual tensor factorization, introduced for local Møller-Plesset perturbation theory in Ref. [J. Yang, Y. Kurashige, F. R. Manby and G. K. L. Chan, J. Chem. Phys. 134, 044123 (2011)10.1063/1.3528935], to local coupled cluster singles and doubles theory (OSV-LCCSD). The method is implemented by modifying an efficient projected-atomic-orbital local coupled cluster program (PAO-LCCSD) described recently, [H.-J. Werner and M. Schütz, J. Chem. Phys. 135, 144116 (2011)10.1063/1.3641642]. By comparison of both methods we find that the compact representation of the amplitudes in the OSV approach affords various advantages, including smaller computational time requirements (for comparable accuracy), as well as a more systematic control of the error through a single energy threshold. Overall, the OSV-LCCSD approach together with an MP2 correction yields small domain errors in practical calculations. The applicability of the OSV-LCCSD is demonstrated for molecules with up to 73 atoms and realistic basis sets (up to 2334 basis functions).