Dissemin is shutting down on January 1st, 2025

Published in

American Institute of Physics, Applied Physics Letters, 8(98), p. 082111

DOI: 10.1063/1.3555440

Links

Tools

Export citation

Search in Google Scholar

The effect of ZnO surface conditions on the electronic structure of the ZnO/CuPc interface

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

The interfacial electronic structures of zinc oxide (ZnO)/copper-phthalocyanine (CuPc) were investigated by in situ x-ray and ultraviolet photoelectron spectroscopy (UPS) to determine the effects of air contamination on the ZnO substrate. UPS spectra showed that the 0.2 eV of the interface dipole is generated at the interface of the air exposed ZnO/CuPc while the interface of the annealed ZnO/CuPc generated −0.2 eV. In both cases, no band bending was observed. On the other hand, band bending at 0.3 eV and an interface dipole of 0.2 eV were observed at the interface of the sputter cleaned ZnO/CuPc. The energy offset between the conduction band maximum of ZnO and the highest occupied molecular orbital of CuPc was determined to be 0.6–0.7 eV for the contaminated ZnO interface while the offset was 1.0 eV for the cleaned ZnO interface. Contaminating moisture has little effect on the offset while the charge transfer was blocked and the offset was decreased in the presence of hydrocarbons.