Published in

American Physical Society, Physical review E: Statistical, nonlinear, and soft matter physics, 4(87)

DOI: 10.1103/physreve.87.042134

Links

Tools

Export citation

Search in Google Scholar

Hard-disk equation of state: First-order liquid-hexatic transition in two dimensions with three simulation methods

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We report large-scale computer simulations of the hard-disk system at high densities in the region of the melting transition. Our simulations reproduce the equation of state, previously obtained using the event-chain Monte Carlo algorithm, with a massively parallel implementation of the local Monte Carlo method and with event-driven molecular dynamics. We analyze the relative performance of these simulation methods to sample configuration space and approach equilibrium. Our results confirm the first-order nature of the melting phase transition in hard disks. Phase coexistence is visualized for individual configurations via the orientational order parameter field. The analysis of positional order confirms the existence of the hexatic phase.