American Physical Society, Physical review E: Statistical, nonlinear, and soft matter physics, 1(81), 2010
DOI: 10.1103/physreve.81.016705
Full text: Download
We discuss convergence and coupling of Markov chains, and present general relations between the transfer matrices describing these two processes. We then analyze a recently developed local-patch algorithm, which computes rigorous upper bound for the coupling time of a Markov chain for non-trivial statistical-mechanics models. Using the coupling from the past protocol, this allows one to exactly sample the underlying equilibrium distribution. For spin glasses in two and three spatial dimensions, the local-patch algorithm works at lower temperatures than previous exact-sampling methods. We discuss variants of the algorithm which might allow one to reach, in three dimensions, the spin-glass transition temperature. The algorithm can be adapted to hard-sphere models. For two-dimensional hard disks, the algorithm allows us to draw exact samples at higher densities than previously possible. ; Comment: 22 pages, 19 figures, python code