Published in

American Institute of Physics, The Journal of Chemical Physics, 20(123), p. 204107

DOI: 10.1063/1.2126976

Links

Tools

Export citation

Search in Google Scholar

Ab initiocalculation of interatomic decay rates by a combination of the Fano ansatz, Green’s-function methods, and the Stieltjes imaging technique

Journal article published in 2005 by Vitali Averbukh ORCID, Lorenz S. Cederbaum
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

A new computational technique is introduced for the ab initio calculation of the rates of interatomic and intermolecular nonradiative decay processes occurring due to electronic correlation. These recently discovered phenomena are described theoretically using the configuration-interaction formalism first introduced by Fano [Phys. Rev. 124, 1866 (1961)] and later adapted to an Auger decay by Howat et al. [J. Phys. B 11, 1575 (1978)]. The boundlike and the continuumlike components of the wave function of the decaying state are constructed using a Green’s-function method known as algebraic diagrammatic construction. A combination of atomic and distributed Gaussian basis sets is shown to provide an adequate description of both boundlike and continuumlike wave-function components. The problem of the normalization of the continuum (final state) wave function is addressed using the Stieltjes imaging technique. The new method is applied to the calculation of the rates of interatomic decay in alkaline-earth–rare-gas clusters. The obtained results help to verify our earlier conclusions [Phys. Rev. Lett. 93, 263002 (2004)] regarding the validity of the virtual-photon transfer model for the interatomic Coulombic decay. In addition, we demonstrate that the process of electron-transfer-mediated decay is responsible for the finite lifetimes of the outer valence vacancies in alkaline-earth–rare-gas clusters.