Published in

American Institute of Physics, Review of Scientific Instruments, 9(76), p. 093904

DOI: 10.1063/1.2044607

Links

Tools

Export citation

Search in Google Scholar

Effect of tip geometry on local indentation modulus measurement via atomic force acoustic microscopy technique

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Atomic force acoustic microscopy (AFAM) is a dynamical AFM-based technique very promising for nondestructive analysis of local elastic properties of materials. AFAM technique represents a powerful investigation tool in order to retrieve quantitative evaluations of the mechanical parameters, even at nanoscale. The quantitative determination of elastic properties by AFAM technique is strongly influenced by a number of experimental parameters that, at present, are not fully under control. One of such issues is that the quantitative evaluation require the knowledge of the tip geometry effectively contacting the surface during the measurements. We present and discuss an experimental approach able to determine, at first, tip geometry from contact stiffness measurements and, on the basis of the achieved information, to measure sample indentation modulus. The reliability and the accuracy of the technique has been successfully tested on samples (Si, GaAs, and InP) with very well known structural and morphological properties and with indentation modulus widely reported in literature. (c) 2005 American Institute of Physics.