Published in

American Institute of Physics, Journal of Applied Physics, 10(97), p. 103539

DOI: 10.1063/1.1906294

Links

Tools

Export citation

Search in Google Scholar

Electrical and optical characterization of 4H-SiC diodes for particle detection

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

The electronic and optical properties of several (medium to high quality) 4H-SiC epitaxial sensors for particle detection have been studied. The samples are n-doped Schottky diodes with different nitrogen concentrations (6×1013cm−3–5×1015cm−3) and thicknesses (20–40μm). A full electrical and optical characterization has been performed by capacitance versus voltage measurements and near-band-edge low-temperature photoluminescence. The effective doping along the epilayer and the depletion width have been determined and data are consistent with the charge collection efficiency characterization performed with a minimum ionizing β-source. All the investigated samples exhibit a 100% collection efficiency. In particular, the best samples yield a highly reproducible signal, well separated from the pedestal. Photoluminescence results show a linear relationship between the effective doping and the ratio of nitrogen-bound excitonic emission (Q0) and free excitonic line (I76), in agreement with a previous work on 4H-SiC with a higher doping concentration [I. G. Ivanov, C. Hallin, A. Henry, O. Kordina, and E. Janzén, J. Appl. Phys. 80, 3504 (1996)]. Moreover we show that the dependence of the major spectral features as a function of the penetration depth of the exciting laser beam can quantitatively provide information on substrate contribution to the photoluminescence. In conclusion, we bring evidence that a detailed characterization of SiC-based detectors, by all optical techniques, yields an accurate value for the net doping and gives a qualitative information on the epilayer thickness prior to any electrical wafer tests.