Dissemin is shutting down on January 1st, 2025

Published in

American Institute of Physics, The Journal of Chemical Physics, 5(121), p. 2085

DOI: 10.1063/1.1763569

Links

Tools

Export citation

Search in Google Scholar

Isomeric interconversion in the linear Cl−-HD anion complex

Journal article published in 2004 by R. L. Wilson, Z. M. Loh ORCID, D. A. Wild, E. J. Bieske ORCID, A. A. Buchachenko
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

The rotationally resolved infrared photodissociation spectrum of Cl−-HD is measured in the HD stretch region. Two Σ-Σ bands are observed, corresponding to transitions from the ground state [the (vHD=0, n=0) level] and first excited intermolecular bend state [the (vHD=0, n=1) level]. The (vHD=0, n=0) and (vHD=0, n=1) states are predominantly associated with the linear Cl−⋯DH and Cl−⋯HD geometries, respectively. The spectrum is complicated by perturbative interactions between levels of the (vHD=0, n=0) and (vHD=0, n=1) rotational manifolds and between levels of the (vHD=1, n=0) and (vHD=1, n=1) rotational manifolds. A global fit to the transition frequencies, taking the lower and upper state perturbations into account, yields zero-order rotational and centrifugal distortion constants and allows us to establish that the (vHD=0, n=1, J″=0) level lies 13.7 cm−1 above the (vHD=0, n=0, J″=0) level. Rovibrational energy level calculations performed using a recent ab initio potential energy surface confirm the picture emerging from the experimental data and provide good agreement with measured molecular parameters. The results emphasize the importance of quantum mechanical interconversion between two isomeric structures of a simple anion complex.