Published in

Elsevier, American Heart Journal, 5(169), p. 663-673, 2015

DOI: 10.1016/j.ahj.2015.01.013

Links

Tools

Export citation

Search in Google Scholar

Accuracy of intravascular ultrasound and optical coherence tomography in identifying functionally significant coronary stenosis according to vessel diameter: A meta-analysis of 2,581 patients and 2,807 lesions

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

INTRODUCTION: Accuracy of intracoronary imaging to discriminate functionally significant coronary stenosis according to vessel diameter remains to be defined. METHODS: PubMed, Scopus, and Google Scholar were systematically searched for studies assessing diagnostic accuracy (area under the receiver operating characteristic curve [AUC], the primary end point) and sensitivity and specificity (the secondary end points) of minimal luminal area (MLA) or of minimal luminal diameter (MLD) derived from intravascular ultrasound (IVUS) or optical coherence tomography (OCT) to detect functionally significant stenosis as determined with fractional flow reserve (FFR). RESULTS: Fifteen studies were included, 2 with 110 patients analyzing only left main (LM), 5 with 224 patients and 306 lesions using OCT, and 9 with 1532 patients and 1681 lesions with IVUS. Median MLA for the OCT studies was 1.96 mm(2) (1.85-1.98 mm(2)), 2.9 mm(2) (2.7-3.1 mm(2)) for MLA of all lesions assessed with IVUS, 2.8 mm(2) (2.7-2.9 mm(2)) for lesions with an angiographic diameter >3 mm, 2.4 mm(2) (2.4-2.5 mm(2)) for lesions 3 mm, and 0.79 (0.70-0.89) for those with a diameter