Published in

American Institute of Physics, Applied Physics Letters, 15(72), p. 1835

DOI: 10.1063/1.121199

Links

Tools

Export citation

Search in Google Scholar

Silicon nanowires prepared by laser ablation at high temperature

Journal article published in 1998 by Y. F. Zhang, Y. H. Tang, N. Wang ORCID, D. P. Yu, C. S. Lee, I. Bello, S. T. Lee
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Silicon nanowires have been synthesized in high yield and high purity by using a high-temperature laser-ablation method with growth rates ranging from 10 to 80 μm/h. Transmission electron microscopic investigation shows that the nanowires are crystalline Si, and have diameters ranging from 3 to 43 nm and length up to a few hundreds microns. Twins and stacking faults have been observed in the Si core of the nanowires. The lattice structure and constant of the nanowires as determined from x-ray diffraction (XRD) are nearly identical to those of bulk Si, although the relative XRD peak intensities are different from those of randomly oriented Si crystallites. Raman scattering from the nanowires shows an asymmetric peak at the same position as that of bulk crystalline silicon.