Published in

Springer, European Journal of Nuclear Medicine and Molecular Imaging, 11(37), p. 2037-2047, 2010

DOI: 10.1007/s00259-010-1505-2

Links

Tools

Export citation

Search in Google Scholar

The role of 18F-FDG PET in the differentiation between lung metastases and synchronous second primary lung tumours

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

PURPOSE: In lung cancer patients with multiple lesions, the differentiation between metastases and second primary tumours has significant therapeutic and prognostic implications. The aim of this retrospective study was to investigate the potential of (18)F-FDG PET to discriminate metastatic disease from second primary lung tumours. METHODS: Of 1,396 patients evaluated by the thoracic oncology group between January 2004 and April 2009 at the Radboud University Nijmegen Medical Centre, patients with a synchronous second primary lung cancer were selected. Patients with metastatic disease involving the lungs served as the control group. Maximum standardized uptake values (SUVs) measured with (18)F-FDG PET were determined for two tumours in each patient. The relative difference between the SUVs of these tumours (SUV) was determined and compared between the second primary group and metastatic disease group. Receiver-operating characteristic (ROC) curve analysis was performed to determine the sensitivity and specificity of the SUV for an optimal cut-off value. RESULTS: A total of 37 patients (21 metastatic disease, 16 second primary cancer) were included for analysis. The SUV was significantly higher in patients with second primary cancer than in those with metastatic disease (58 vs 28%, respectively, p