Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, Organometallics, 21(31), p. 7415-7426, 2012

DOI: 10.1021/om300703p

Links

Tools

Export citation

Search in Google Scholar

Synthesis and Reactivity of Ruthenium Phosphite Indenylidene Complexes

This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The synthesis of the four olefin metathesis precatalysts Caz-1a-d, featuring the NHC ligand N,N'-bis(2,4,6-trimethylphenyl)imidazolin-2-ylidene (SIMes) and four different phosphites (P((OPr)-Pr-i)(3), P(OPh)(3), P(OEt)(3), and P(OMe)(3)), is reported. The complexes are readily synthesized from commercially available [RuCl2(3-phenylinden-1-ylidene)-(pyridine)(SIMes)] (Ind-III) in yields of up to 88%. These complexes adopt an unusual cis configuration between the phosphite and the NHC ligands. NMR experiments and computational studies confirm that the cis complexes are thermodynamically favored in comparison to their trans counterparts. In addition, the isomerization from trans to cis occurs via a mononuclear and non-dissociative mechanism. Among the four precatalysts, cis-Caz-1a, featuring a P((OPr)-Pr-i)(3) ligand, displays the highest activity in ring-closing metathesis and cross-metathesis transformations. Experiments at low catalyst loadings demonstrated the potential of this catalyst, allowing better conversions than with commonly used commercially available precatalysts.