Published in

Nature Research, Nature Methods, 2(11), p. 167-170, 2013

DOI: 10.1038/nmeth.2767

Links

Tools

Export citation

Search in Google Scholar

Drift time-specific collision energies enable deep-coverage data-independent acquisition proteomics

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We present a data-independent acquisition mass spectrometry method, ultradefinition (UD) MS(E). This approach utilizes ion mobility drift time-specific collision-energy profiles to enhance precursor fragmentation efficiency over current MS(E) and high-definition (HD) MS(E) data-independent acquisition techniques. UDMS(E) provided high reproducibility and substantially improved proteome coverage of the HeLa cell proteome compared to previous implementations of MS(E), and it also outperformed a state-of-the-art data-dependent acquisition workflow. Additionally, we report a software tool, ISOQuant, for processing label-free quantitative UDMS(E) data.