American Chemical Society, Macromolecules, 2(47), p. 560-570, 2014
DOI: 10.1021/ma4022983
Full text: Unavailable
Polymerizations and mechanistic studies have been performed to understand the kinetic pathways for the polymerization of the monomer oligo(ethylene oxide) monomethyl ether acrylate (OEOA) in aqueous media. Typically, the medium consisted of 18 wt % OEOA in water, in the presence of Cu catalysts coordinated by tris[2(dimethylamino)ethyl]amine (Me6TREN). Well-controlled polymerization of OEOA can be achieved in the presence of halide anions and Cu wire with≲600 ppm of soluble CuII species, rather than previously reported ca. 10 000 ppm of CuII and Cu0 particles formed by predisproportionation of CuI prior to monomer and initiator addition. The mechanistic studies conclude that even though disproportionation is thermodynamically favored in aqueous media, the SARA ATRP, not SET-LRP, mechanism holds in these reactions. This is because alkyl halides are much more rapidly activated by CuI than by Cu0 (contribution of Cu0 to activation is