Published in

American Chemical Society, Journal of Physical Chemistry C, 29(118), p. 15853-15862, 2014

DOI: 10.1021/jp504652u

Links

Tools

Export citation

Search in Google Scholar

Structural and Morphological Study of a Poly(3-hexylthiophene)/Streptavidin Multilayer Structure Serving as Active Layer in Ultra-Sensitive OFET Biosensors

This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Organic field-effect transistors including a functional bio-recognition interlayer, sandwiched between the dielectric and the organic semiconductor layers, have been recently proposed as ultrasensitive label-free biosensors capable to detect target molecule in the low pM concentration range. The morphology and the structure of the stacked bilayer formed by the protein bio-interlayer and the overlying organic semiconductor is here investigated for different protein deposition methods. X-ray scattering techniques and scanning electron microscopy allow to gather key relevant information on the interface structure and to assess target analyte molecules capability to percolate through the semiconducting layer reaching the protein deposit lying underneath. Correlations between the structural and morphological data and the device analytical performances are established allowing to gather relevant details on the sensing mechanism and further improving sensor performances, in particular in terms of sensitivity and selectivity.