Published in

American Chemical Society, Journal of Physical Chemistry C, 13(118), p. 7110-7116, 2014

DOI: 10.1021/jp408339m

Links

Tools

Export citation

Search in Google Scholar

Tracking the Hydrogen Motion in Defective Graphene

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Bulk defective graphene produced by thermal exfoliation of graphite oxide was treated under H-2 and investigated with X-ray photoemission spectroscopy, neutron spectroscopy, and solid state nuclear magnetic resonance. Graphene defects appear effective in dissociating H2 molecule and in promoting H covalent absorption on the carbon backbone. Measured generalized phonon density of states shows the presence of localized peaks ascribed to C H bending modes already in pristine graphene, whose intensities enhance when samples are treated under H2 at 1273 K. However, H-1 NMR evidences a thermally activated dynamics with a correlation time of a few microseconds assigned to a part of H atoms bound onto the graphene plane. These findings point toward a diffusive dynamics of the hydrogen chemically e, bound to graphene sheets, already active at room temperature.