Links

Tools

Export citation

Search in Google Scholar

Distinct Tryptophan Catabolism and Th17/Treg Balance in HIV Progressors and Elite Controllers

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

Tryptophan (Trp) catabolism into immunosuppressive kynurenine (Kyn) by indoleamine 2,3-dioxygenase (IDO) was previously linked to Th17/Treg differentiation and immune activation. Here we examined Trp catabolism and its impact on Th17/Treg balance in uninfected healthy subjects (HS) and a large cohort of HIV-infected patients with different clinical outcomes: ART-naive, Successfully Treated (ST), and elite controllers (EC). In ART-naive patients, increased IDO activity/expression, together with elevated levels of TNF-alpha and sCD40L, were associated with Treg expansion and an altered Th17/Treg balance. These alterations were normalized under ART. In contrast, Trp 2,3-dioxegenase (TDO) expression was dramatically lower in EC when compared to all other groups. Interestingly, EC displayed a distinctive Trp metabolism characterized by low Trp plasma levels similar to ART-na ve patients without accumulating immunosuppressive Kyn levels which was accompanied by a preserved Th17/Treg balance. These results suggest a distinctive Trp catabolism and Th17/Treg balance in HIV progressors and EC. Thus, IDO-induced immune-metabolism may be considered as a new inflammation-related marker for HIV-1 disease progression.