Published in

Elsevier, Progress in Quantum Electronics, 4(34), p. 191-259

DOI: 10.1016/j.pquantelec.2010.04.001

Links

Tools

Export citation

Search in Google Scholar

ZnO nanostructures for optoelectronics: Material properties and device applications

Journal article published in 2010 by A. B. Djurišić, Amc M. C. Ng ORCID, Xy Y. Chen
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In recent years, there has been increasing interest in ZnO nanostructures due to their variety of morphologies and availability of simple and low cost processing. While there are still unanswered questions concerning fundamental properties of this material, in particular those related to defects and visible luminescence lines, great progress has been made in synthesis methods and device applications of ZnO nanostructures. In this review, we will provide a brief overview of synthesis methods of ZnO nanostructures, with particular focus on the growth of perpendicular arrays of nanorods/nanowires which are of interest for optoelectronic device applications. Then, we will provide an overview of material properties of ZnO nanostructures, issues related to doping with various elements to achieve either p- or n-type conductivity. Doping to alter optical or magnetic properties will also be discussed. Then, issues related to practical problems in achieving good electrical contacts to nanostructures will be presented. Finally, we will provide an overview of applications of ZnO nanostructures to light-emitting devices, photodetectors and solar cells.