Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Pattern Recognition, 8(43), p. 2833-2844

DOI: 10.1016/j.patcog.2010.02.016

Links

Tools

Export citation

Search in Google Scholar

Adaptive fingerprint pore modeling and extraction

Journal article published in 2010 by Qijun Zhao, David Zhang, Lei Zhang ORCID, Nan Luo
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Sweat pores on fingerprints have proven to be discriminative features and have recently been successfully employed in automatic fingerprint recognition systems (AFRS), where the extraction of fingerprint pores is a critical step. Most of the existing pore extraction methods detect pores by using a static isotropic pore model; however, their detection accuracy is not satisfactory due to the limited approximation capability of static isotropic models to various types of pores. This paper presents a dynamic anisotropic pore model to describe pores more accurately by using orientation and scale parameters. An adaptive pore extraction method is then developed based on the proposed dynamic anisotropic pore model. The fingerprint image is first partitioned into well-defined, ill-posed, and background blocks. According to the dominant ridge orientation and frequency on each foreground block, a local instantiation of appropriate pore model is obtained. Finally, the pores are extracted by filtering the block with the adaptively generated pore model. Extensive experiments are performed on the high resolution fingerprint databases we established. The results demonstrate that the proposed method can detect pores more accurately and robustly, and consequently improve the fingerprint recognition accuracy of pore-based AFRS. ; Department of Computing