Published in

2013 IEEE Energy Conversion Congress and Exposition

DOI: 10.1109/ecce.2013.6647408

Links

Tools

Export citation

Search in Google Scholar

Modeling and analysis of harmonic resonance in a power electronics based AC power system

Journal article published in 2013 by Xiongfei Wang ORCID, Frede Blaabjerg, Zhe Chen, Weimin Wu
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The dynamic interactions among the interconnected power converters may bring in harmonic resonance in a power electronics based power system. This paper addresses this issue in a power system dominated by multiple current- and voltage-controlled inverters with LCL- and LC-filters. The impedance-based analysis approach is adopted and expanded to a meshed and balanced three-phase power network. An impedance ratio derivation method is proposed based on the nodal admittance matrix. By this means, the contribution of each inverter to the system resonance modes can be easily predicted by the Nyquist stability criterion. To validate the theoretical analysis, the time domain simulations and experimental tests on a three-inverter-based system are presented. ; The dynamic interactions among the interconnected power converters may bring in harmonic resonance in a power electronics based power system. This paper addresses this issue in a power system dominated by multiple current- and voltage-controlled inverters with LCL- and LC-filters. The impedance-based analysis approach is adopted and expanded to a meshed and balanced three-phase power network. An impedance ratio derivation method is proposed based on the nodal admittance matrix. By this means, the contribution of each inverter to the system resonance modes can be easily predicted by the Nyquist stability criterion. To validate the theoretical analysis, the time domain simulations and experimental tests on a three-inverter-based system are presented.