Dissemin is shutting down on January 1st, 2025

Published in

Oxford University Press, Neurosurgery, 1(72), p. 77-91, 2013

DOI: 10.1227/neu.0b013e318276b29d

Links

Tools

Export citation

Search in Google Scholar

ELTD1, A Potential New Biomarker for Gliomas

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

BACKGROUND:: Glioblastoma multiforme (GBM), high-grade glioma, is characterized by being diffuse, invasive, and highly angiogenic, and has a very poor prognosis. Identification of new biomarkers could help in the further diagnosis of GBM. OBJECTIVE:: To identify ELTD1 ([epidermal growth factor (EGF), latrophilin and seven transmembrane domain-containing 1] on chromosome 1) as a putative glioma-associated marker via a bioinformatic method. METHODS:: We used advanced data mining and a novel bioinformatics method to predict ELTD1 as a potential novel biomarker that is associated with gliomas. Validation was done with immunohistochemistry (IHC), which was used to detect levels of ELTD1 in human high-grade gliomas, and rat F98 glioma tumors. In vivo levels of ELTD1 in rat F98 gliomas were assessed using molecular MRI (mMRI). RESULTS:: ELTD1 was found to be significantly higher (P=.03) in high-grade gliomas (50 patients) compared to low-grade gliomas (21 patients), and compared well to traditional IHC markers including VEGF, GLUT-1,CAIX, and HIF-1α. ELTD1 gene expression indicates an association with grade, survival across grade, and an increase in the mesenchymal subtype. Significantly high (P<0.001) in vivo levels of ELTD1 were additionally found in F98 tumors, compared to normal brain tissue. CONCLUSION:: This study strongly suggests that associative analysis was able to accurately identify ELTD1 as a putative glioma-associated biomarker. The detection of ELTD1 was also validated in both rodent and human gliomas, and may serve as an additional biomarker for gliomas in pre-clinical and clinical diagnosis of gliomas.