Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Advances in Space Research, 8(20), p. 1481-1484

DOI: 10.1016/s0273-1177(97)00421-3

Links

Tools

Export citation

Search in Google Scholar

EuroMir '95: First results from the dustwatch-P detectors of the European Space Exposure Facility

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A small, passive, retrievable dust detector/collector experiment (Dustwatch-P), based on thin foil and aerogel capture cells has been developed at the University of Rent by the Unit for Space Sciences & Astrophysics (USSA). It was mounted in the European Space Exposure Facility (ESEF) designed by the Institut d'Astrophysique Spatial (Orsay, France) and flown on the joint ESA/Russian Space Agency EuroMir '95 mission. The experiment sampled micrometeoroids and space debris in the immediate vicinity of a large space facility (Mit) and offers the opportunity for detailed particle characterisation by intact capture. Dustwatch-P was housed in 2 ESEF cassettes, each contained: 1849mm(2) of aluminium foil capture cells, 2.4 mu m and 5 mu m thick respectively, mounted above a pure copper plate; 8450mm(2) of 12mm thick silica aerogel (density of 0.1g/cm(3) and pore size of approximately 0.07 mu m). 8650mm of experiment-holder surfaces (highly polished 6061-T6 aluminium alloy) were also used for detection. The foils and experiment-holder surfaces readily give a flux measurement for comparison to previous data with chemical classification of any impactor residues. The aerogel was intended to capture, with minimal modification, incident hypervelocity particles. Dustwatch-P was exposed to the space environment when the ESEF cassettes were opened during Mir EVA's on the 20/21 October '95. The cassettes were hermetically sealed in space for return to Earth in February '96. We present the first results of post-flight analysis. A hypervelocity perforation has been found in each foil and a region of ejecta impacts indicating a large impact in the vicinity. This impact rate gives a higher flux than expected, possibly due to a debris cloud.