Dissemin is shutting down on January 1st, 2025

Published in

Springer, Journal of Sol-Gel Science and Technology, 3(60), p. 352-358, 2011

DOI: 10.1007/s10971-011-2504-x

Links

Tools

Export citation

Search in Google Scholar

Proteins conjugation with ZnO sol–gel nanopowders

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The conjugation between probe biomolecules and inorganic nanoparticles has been studied. Three different and biologically relevant proteins, bovine serum albumin (BSA), lysozyme (LSZ) and Ribonuclease A (RNAseA), have been selected as model systems because of their difference in size and isoelectric point. Zinc oxide nanoparticles, synthesized via sol–gel, have been thoroughly characterized by X-ray Photoelectron Spectroscopy, Scanning Electron Microscopy and X-ray Diffraction, and subsequently used as platforms for immobilization of the biomolecules. The interaction of the three proteins with the ZnO surface was performed in phosphate buffer solutions at pH 7.2 in order to mimic physiological fluids and was investigated through fluorescence experiments. The obtained results indicate that conjugation of BSA, LZS and RNAseA on the oxide nanoparticles was mostly dictated by the overall charge of the different proteins. Electrostatic bonds dominate the formation of the protein/ZnO conjugates, whereas the size of the proteins seems to play a negligible role under the adopted experimental conditions.