Published in

The Company of Biologists, Disease Models and Mechanisms, 5-6(2), p. 306-312, 2009

DOI: 10.1242/dmm.001271

Links

Tools

Export citation

Search in Google Scholar

The mood stabiliser lithium suppresses PIP3 signalling in Dictyostelium and human cells

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Bipolar mood disorder (manic depression) is a major psychiatric disorder whose molecular origins are unknown. Mood stabilisers offer patients both acute and prophylactic treatment, and experimentally, they provide a means to probe the underlying biology of the disorder. Lithium and other mood stabilisers deplete intracellular inositol and it has been proposed that bipolar mood disorder arises from aberrant inositol (1,4,5)-trisphosphate [IP(3), also known as Ins(1,4,5)P(3)] signalling. However, there is no definitive evidence to support this or any other proposed target; a problem exacerbated by a lack of good cellular models. Phosphatidylinositol (3,4,5)-trisphosphate [PIP(3), also known as PtdIns(3,4,5)P(3)] is a prominent intracellular signal molecule within the central nervous system (CNS) that regulates neuronal survival, connectivity and synaptic function. By using the genetically tractable organism Dictyostelium, we show that lithium suppresses PIP(3)-mediated signalling. These effects extend to the human neutrophil cell line HL60. Mechanistically, we show that lithium attenuates phosphoinositide synthesis and that its effects can be reversed by overexpression of inositol monophosphatase (IMPase), consistent with the inositol-depletion hypothesis. These results demonstrate a lithium target that is compatible with our current knowledge of the genetic predisposition for bipolar disorder. They also suggest that lithium therapy might be beneficial for other diseases caused by elevated PIP(3) signalling.