Elsevier, Molecular and Cellular Proteomics, 4(11), p. M111.014563, 2012
Full text: Download
Antibody effector functions have been shown to be influenced by the structure of the Fc N-glycans. Here we studied the changes in plasma or serum IgG Fc N-glycosylation upon vaccination of 10 Caucasian adults and 10 African children. Serum/plasma IgG was purified by affinity chromatography prior to and at two time points after vaccination. Fc N-glycosylation profiles of individual IgG subclasses were determined for both total IgG and affinity-purified anti-vaccine IgG using a recently developed fast nanoliquid chromatography-electrospray ionization MS (LC-ESI-MS) method. While vaccination had no effect on the glycosylation of total IgG, anti-vaccine IgG showed increased levels of galactosylation and sialylation upon active immunization. Interestingly, the number of sialic acids per galactose increased during the vaccination time course, suggesting a distinct regulation of galactosylation and sialylation. In addition we observed a decrease in the level of IgG1 bisecting N-acetylglucosamine whereas no significant changes were observed for the level of fucosylation. Our data indicate that dependent on the vaccination time point the infectious agent will encounter IgGs with different glycosylation profiles, which are expected to influence the antibody effector functions relevant in immunity.