Published in

j biomater tissue eng, 9(5), p. 730-743

DOI: 10.1166/jbt.2015.1385

Links

Tools

Export citation

Search in Google Scholar

Novel Core–Shell Nanocapsules for the Tunable Delivery of Bioactive rhEGF: Formulation, Characterization and Cytocompatibility Studies

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Epidermal growth factor (EGF) has been demonstrated to play a crucial role in the regeneration of skin. However, the topical application of the cytokine is limited by several key drawbacks, such as hair loss, chemical instability, need for supra-physiological (un-safe) dosages, photo-degradation as well as high cost; leading to patient non-compliance. The aim of the present study was to formulate a novel hybrid tunable delivery system in the form of a core–shell nanocapsules-based suspension. Nanocapsules were composed of cationic solid lipid nanoparticles (SLN)-based core and a customizable bi-layered shell structure produced by the layer-by-layer self-assembly of alternative coatings of anionic hyaluronan (HA) and cationic chitosan (CH). The resulted core–shell based nanocapsules were found to be physically stable, spherical, monodisperse, hydrophilic and cytocompatible in nature (