Dissemin is shutting down on January 1st, 2025

Published in

Forest Research and Management Institute ICAS, Annals of Forest Research, 1(59)

DOI: 10.15287/afr.2016.458

Links

Tools

Export citation

Search in Google Scholar

Patterns of biomass allocation between foliage and woody structure: the effects of tree size and specific functional traits

Journal article published in 2016 by Sylvanus Mensah, Romain Glèlè Kakaï ORCID, Thomas Seifert
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown
Data provided by SHERPA/RoMEO

Abstract

Biomass allocation is closely related to species traits, resources avail- ability and competitive abilities, and therefore it is often used to capture resource utilisation within plants. In this study, we searched for patterns in biomass alloca- tion between foliage and wood (stem plus branch), and how they changed with tree size (diameter), species identity and functional traits (leaf area and specific wood density). Using data on the aboveground biomass of 89 trees from six species in a Mistbelt forest (South Africa), we evaluated the leaf to wood mass ratio (LWR). The effects of tree size, species identity and specific traits on LWR were tested using Generalised Linear Models. Tree size (diameter) was the main driver of bio- mass allocation, with 44.43 % of variance explained. As expected, LWR declined significantly with increasing tree diameter. Leaf area (30.17% explained variance) and wood density (12.61% explained variance) also showed significant effects, after size effect was accounted for. Results also showed clear differences among species and between groups of species. Per unit of wood mass, more biomass is allocated to the foliage in the species with the larger leaf area. Inversely, less bio- mass is allocated to the foliage in species with higher wood density. Moreover, with increasing diameter, lower wood density species tended to allocate more biomass to foliage and less biomass to stems and branches. Overall, our results emphasise the influence of plant size and functional traits on biomass allocation, but showed that neither tree diameter and species identity nor leaf area and wood density are the only important variables.