Published in

Elsevier, Journal of Biological Chemistry, 28(279), p. 29374-29385, 2004

DOI: 10.1074/jbc.m313955200

Links

Tools

Export citation

Search in Google Scholar

The Major Vault Protein Is a Novel Substrate for the Tyrosine Phosphatase SHP-2 and Scaffold Protein in Epidermal Growth Factor Signaling

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The catalytic activity of the Src homology 2 (SH2) domain-containing tyrosine phosphatase, SHP-2, is required for virtually all of its signaling effects. Elucidating the molecular mechanisms of SHP-2 signaling, therefore, rests upon the identification of its target substrates. In this report, we have used SHP-2 substrate-trapping mutants to identify the major vault protein (MVP) as a putative SHP-2 substrate. MVP is the predominant component of vaults that are cytoplasmic ribonucleoprotein complexes of unknown function. We show that MVP is dephosphorylated by SHP-2 in vitro and it forms an enzyme-substrate complex with SHP-2 in vivo. In response to epidermal growth factor (EGF), SHP-2 associates via its SH2 domains with tyrosyl-phosphorylated MVP. MVP also interacts with the activated form of the extracellular-regulated kinases (Erks) in response to EGF and a constitutive complex between tyrosyl-phosphorylated MVP, SHP-2, and the Erks was detected in MCF-7 breast cancer cells. Using MVP-deficient fibroblasts, we demonstrate that MVP cooperates with Ras for optimal EGF-induced Elk-1 activation and is required for cell survival. We propose that MVP functions as a novel scaffold protein for both SHP-2 and Erk. The regulation of MVP tyrosyl phosphorylation by SHP-2 may play an important role in cell survival signaling.