Published in

Cell Press, American Journal of Human Genetics, 6(91), p. 1041-1050, 2012

DOI: 10.1016/j.ajhg.2012.10.024

Links

Tools

Export citation

Search in Google Scholar

Mutations in ANO3 Cause Dominant Craniocervical Dystonia: Ion Channel Implicated in Pathogenesis

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In this study, we combined linkage analysis with whole-exome sequencing of two individuals to identify candidate causal variants in a moderately-sized UK kindred exhibiting autosomal-dominant inheritance of craniocervical dystonia. Subsequent screening of these candidate causal variants in a large number of familial and sporadic cases of cervical dystonia led to the identification of a total of six putatively pathogenic mutations in ANO3, a gene encoding a predicted Ca(2+)-gated chloride channel that we show to be highly expressed in the striatum. Functional studies using Ca(2+) imaging in case and control fibroblasts demonstrated clear abnormalities in endoplasmic-reticulum-dependent Ca(2+) signaling. We conclude that mutations in ANO3 are a cause of autosomal-dominant craniocervical dystonia. The locus DYT23 has been reserved as a synonym for this gene. The implication of an ion channel in the pathogenesis of dystonia provides insights into an alternative mechanism that opens fresh avenues for further research.