Dissemin is shutting down on January 1st, 2025

Published in

American Astronomical Society, Astrophysical Journal, 2(506), p. L105-L108, 1998

DOI: 10.1086/311655

Links

Tools

Export citation

Search in Google Scholar

Expected Characteristics of the Subclass of Supernova Gamma-Ray Bursts

Journal article published in 1998 by J. S. Bloom, S. R. Kulkarni, F. Harrison, T. Prince, E. S. Phinney ORCID, D. A. Frail
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The spatial and temporal coincidence between the gamma-ray burst (GRB) 980425 and supernova (SN) 1998bw has prompted speculation that there exists a class of GRBs produced by SNe (``S-GRBs''). Robust arguments for the existence of a relativistic shock have been presented on the basis of radio observations. A physical model based on the radio observations lead us to propose the following characteristics of supernovae GRBs (S-GRBs): 1) prompt radio emission and implied brightness temperature near or below the inverse Compton limit, 2) high expansion velocity of the optical photosphere as derived from lines widths and energy release larger than usual, 3) no long-lived X-ray afterglow, and 4) a single pulse (SP) GRB profile. Radio studies of previous SNe show that only type Ib and Ic potentially satisfy the first condition. Accordingly we have investigated proposed associations of GRBs and SNe finding no convincing evidence (mainly to paucity of data) to confirm any single connection of a SN with a GRB. If there is a more constraining physical basis for the burst time-history of S-GRBs beyond that of the SP requirement, we suggest the 1% of light curves in the BATSE catalogue similar to that of GRB 980425 may constitute the subclass. Future optical follow-up of bursts with similar profiles should confirm if such GRBs originate from some fraction of SN type Ib/Ic. ; Comment: 11 pages of LaTeX with 1 figure. Submitted to the Astrophysical Journal Letters