Published in

MDPI, Energies, 4(9), p. 256

DOI: 10.3390/en9040256

Links

Tools

Export citation

Search in Google Scholar

An Experimental Study on the Potential Usage of Acetone as an Oxygenate Additive in PFI SI Engines

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

To face the challenges of fossil fuel shortage and stringent emission norms, there is growing interest in the potential usage of alternative fuels such as bio-ethanol and bio-butanol in internal combustion engines. More recently, Acetone-Butanol-Ethanol (ABE), the intermediate product of bio-butanol fermentation, has been gaining a lot of attention as an alternative fuel. The literature shows that the acetone in the ABE blends plays an important part in improving the combustion performance and emissions, owing to its higher volatility. Acetone and ethanol are the low-value byproducts during bio-butanol production, so using acetone and ethanol as fuel additives may have both economic and environmental benefits. This study focuses on the differences in combustion, performance and emission characteristics of a port-injection spark-ignition engine fueled with pure gasoline (G100), ethanol-containing gasoline (E10 and E30) and acetone-ethanol-gasoline blends (AE10 and AE30 at A:E volumetric ratio of 3:1). The tests were conducted at 1200 RPM, under gasoline maximum brake torque (MBT) at 3 bar and 5 bar brake mean effective pressure (BMEP). Performance and emission data were measured under various equivalence ratios. Based on the comparison of combustion phasing, brake thermal efficiency, brake specific fuel consumption and various emissions of different fuels, it was found that using acetone as an oxygenate additive with the default ECU calibration (for gasoline) maintained the thermal efficiency and showed lower unburned HC emissions.